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Human rhinoviruses (HRVs), menmbersofthepicornavirusftmillyaresmall,

icosahedral RNA viruses and are the main causative agent of the common cold.

The capsid of all picornaviruses is composed of 60 copies of each of four proteins,

VPI.VP2,VP3, and VP4 arranged on a T=I icosahedral surfacel2]. The three

large capsid proteins VP1-VP3 share a common core structural motif, an eight-

stranded (3-barrel. The secondary-structural elements of this barrel are connected

throughout loops of dissimilar length and structure, that decorate the surface of

the virus. Binding sites for neutralizing antibodies are generally located in these

hyper-variable loops and flank the ,canyon,, which has been proposed to contain

the recognition site for the extracellular receptors of HRVs[3]. Three neutralizing

antigenic sites, designated A, B, and C, have been defined for HRV2 [4 ] by analysis

of escape mutants and using structural information available for another member

of the minor receptor group, HRVI A[ I ].

The monoclonal antibody 8F5, raised against native virions, not only binds

to the viral particle in its native conformation, but also to the viral protein VP2

on Western blots[5]. This property was used to define the region of the binding

site by bacterial expression of various deletions mutants ofVP2. It was found that

To whom correspondence should he addres,cd

[But II.Soc.C. t .Cicn.1,A oLXIII, Num.1,1992



376 /. IOKIIO. 1). II .I:1 , I). SII.IJZI., 1.111, 1

the binding site lies between residues 153 and 164. This polvpeptide segment is

located in the region of site B, analogous to the NIm- II antigenic site on H RV 14

which appears as a,, puff, on the viral particle surface between strands of the eight-

stranded P-barrel. As antibody 8F5 also recognizes peptides hearing this

sequence[6], an extensive analysis of the recognition site was carried out with a set

of overlapping peptidcs[7]. These experiments defined the minimal binding site

as the sequence (AE)TRLNPI) corresponding to residues 159-165 of VP2.

Furthermore all sequenced mutans that escape neutralization by 8F5 are also

localized in this minimal site[4].

In this work we report the 2.5 A resolution crystal structure of the complex

formed by a synthetic peptide and an Fab fragment from the monoclonal antibody

81'5. The 15 amino acids long, synthetic peptide, used in this crystallographic

work has the sequence (VKAE"I'RI,NPDI.QP'l'F-NH2) that corresponds to

residues 156 to 170 of VP2 and includes the minimal binding site of 8F5. The

structure of the Fab in the complex is compared to the crystal structure of the

uncomplexed 8F5 antibody which had previosly been determined at 2.8 A

resolution in our laboratory (Tornio et al. in press).
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The complex of Fab 8F5 with the 15 amino-acid oligopeptide (representig

residues 156 to 170 of HRV2 VP2) was crystallized by the hanging-drop vapor

diffusion method. 7 nil droplets containing 7.0 mg/ml of Fab, I . I mg/1111 of

oligopeptide, 0.45 M sodium citrate, 25 mM NaCI, 50 mM Tris, pH 7.75, were

equilibrated against a reservoir containing I ml ofa solution 0.9 M sodium citrate,

equally buffered, at 4°C. The space group was P2121 2,1 with unit cell dimensions

of a=71.1 A, b=75.5 A, and r-91.4 A. X-ray diffraction data were collected with

a Siemens-Nicolet-Xentronics area detector and reduced with the XENGEN

package of programs. Tha data set was 96.7% complete to 2.5 A resolution,

93.2% reflections with Fo>26(Fo). The structure was solved by molecular

replacement using the MERLCYF package[8]. The starting model was taken from

the structure of the uncomplexed Fab fragment of 8F5 which was solved at 2.8

A resolution in our laboratory. '[lie correctly oriented and positioned model was

subjected to rigid body refinement with XPI OR[9] and the resulting R factor for

data with Fo>26(Fo) between 8.0 A and 3.0 A resolution was 36.5%. At this stage,

a 2Fo-Fc electron density neap was calculated. This map clearly showed extra

density corresponding to the oligopeptide occupying the antigen binding site.

This map also showed poor density for some parts of the three CDRs of the heavy

chain that were removed from the model and gradually rebuilt during the course

of the refinement. After alternative cycles of least-squares refinement with

[Budl.Soc.C.u.Cicn.l,V°LXIII,N6m.1,1992



(K) ti/A/ 577 (.(11 I/I ()I//// CUSIPLIA JORIN1) 377

PROI.SQ[ 10] and manual model building using TOM-FRODO[ 1 1 ], the model
refined to an R value of 24.7% for data between 7.0-2.55 A resolution. A
difference electron density map was used to locate the peptide . The high quality
of th is electron density allowed us to recognize and build the sequence KAETRI.NP.
"These residues correspond well to the minimal binding site for 8F5 . The rest of
the peptide did not show clear side-chain density and was not build at this stage.
After a refinement cycle, most of the electron density for the peptide residues was
clearly interpretable and those residues were added to the model. The current R
factor for the model inclouding all the peptide residues and -75 well ordered
water molecules is 17.3% for 15581 reflections with Fo>26 ( Fo) between 7.0-2.50
A resolution . The root - men-square deviation for bond Ienghts is 0.20 and for
bond angles is 2. 1 °.

CO.vI[,I IXs I R(' I LRI.

"I'he disposition ofCDRs in the Fab creates a pocket occupied by the peptide
in the complex.The Fab residues in direct contact with the peptide involves the
six CDRs and a few framework residues: 12 residues are from the light chain
(among which three framework residues) and 13 from the heavy chain (two
outsidetheCDRs).'I'heframeworkresidues'I'yr,_ and Asp aremakinghydrogen
bonds with the peptide Arg,i, side chain. All the peptide residues are directly
involved in interactions with the antibody. A diversity of hydrogen bonds (20)
between the Fab and the peptide, sonic of them (5) with an ionic character,
indicates that polar interactions are important during the specific recognition in
the antibody-antigen complex. The extent of the contacting surface (1 2) in the
amino acid peptides correlates well with epitope mapping results from an earlier
inmunological study. Some water molecules have been located and placed in the
vicinity of the peptide in the final complex model. A few of these water molecules
trapped at the antigen-antibody interface mediate some ofthe specific interactions.

The peptide in the complex has a compact folded conformation (figure 1).
The Col. atoms of residues 2157 and 2168 are only 6.9 A appart. Several turns are
observed in the peptide structure. The folded conformation of the peptide is
further stabilized by side chain interactions. Thus Glu,159 and Arg,,,,, form two
lateral salt bridges while the hydrophobic part of their side chains pack together
withIeu,. ,andLeu,i fromthe peptide.'l'heside chain ofGln,i, loops backwards
making well defined hydrogen bonds main chain atoms of residues Alai and
Arg,1 ,i. Pro has been built with cis conformation, though the alternative trans
configuration cannot be, at present, completely discarded.

Peptide residues, in the minimal binding site, appear to be strongly involved
in the specific recognition interactions and show the lower peptide temperature
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bonds arc shown as discontinous lines. Side chains front the N and terminal residues have been

omitted.

B values. These values are similar to some of the best defined residues of the Fab

fragment , indicating that the occupancy of the peptide in the crystal is essentially

100% and that the movility of residues most involved in the recognition

mechanism is very limited in the complex . In the final (Fo-Fc ) omit map there is

clearly visible electron density for the 15 peptide resi(Iues . However the N and C

terminal residues appear to be quite shakics.

The comparison of the Fab fragment structure in the absence and in the

presence of'the peptide ligand shows three kinds of structural changes:

1) The elbow angle has opened more than 30°. Thus while in the complex

the elbow angle observed is 158° in the uncon ) plexcd Fab structure was only 12 7 ".

This change likely reflects the flexibility of the antibody arms and does not appear

to be directly related to the interactions with the ligand.

2) "Fhc relative rotation of the variable domains with respect to each other

is around 3.5°. This kind ofmovenment had already been defined as the «interfacc

adaptor.

3) The movement of a few specific residues concentrated in the CI)Rs from

the heavy chain. Both main and side chain atoms in these residues show important
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displacements. The movements of residues in the CDRs from the light chain appear

to be only slightly above the average movements observed in between the two Fab

structures. "Fhe heavy chain CDRs movements could be seen as ^^ rigid body rotation

around some pivotal points, in such a way, that the conformation ofthese CI)Rs loops

remains identical in both Fab structures. In all cases the direction of the Fab atomic

displacements in the complex are towards the antigen binding pocket.

^hhe last two kind of movements arc necessary to accomplish the optimal

surface complementarily attained in the complex. ^Fhus the antibody binding

surface is defined by both the CI)Ils confirmation and their relative locations.

)_)(^Chl^'(; OI^ ^f! ik^:;W^IIBOI)1' C)N ll 3k^: A'lltl<^ ^'

Antibody 8F5 was raised against intact visions . Is the peptide structure in the

complex related to the conformation adopted in the intact vision, by the

corresponding sequence of VP2? The three dimensional structure of HRV2 has

not vet been determined. So the atomic ciirdinates of H RV 1 A[ l^, closely related

I^igure Z. Supcrposi^ion o(thr pcptidr stnicwre (vrllo^^^) on the u^rrc^p^inding lo^^p ^^^ tlic ^^iral

protein VI'? (red) from [hc f IRVIA strucnirc. Viral proteins VI'I (bloc) and VI'3 (green) arc also

shown to indicate the location of the ^^puff> on Vl'2.
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on the viral capsid proteins. I he viral proteins VP 1, V1'2 and VP3 for both the rctrrcncc and a two

told related protomers are shown.

to HRV2, were used in the search for structural homologies . The least squares

supperposition of C" atoms from residues 2157 until 2164 in the peptide with

residues2159 till2166inVP2 givesarootpaeansquaredeviation ( r.m.s.)ofO .9A.The

corresponding r.m.s. for CI3 atoms between equivalent residues is I.4A.'I'hus both

main chain atoms and side chain orientations , for those residues , are well

superimposed in this alignement . With this homology , HRV2 appears to have

an insertion ofthree residues ( Pro, - Asp , „ Leu,i^^)andadeletionoftworesidues

(Ser,^- GIn , ^ 5) with respect to HRV IA. The side chains of (An,, ,, and Gln,^ ^,

whose C" atom is close to the position ofC" of- Pro , 1t , could play structurally equiva-

lent roles. The cis conformation assigned to Pro,i ,,, that allows the peptide to

attain a compact conformation , does not seem to be related with the conformation

adopted in the protein by Pro,,,, and, as a consequence , the following peptide

residues ( Ihr,it„ and Glu , i_^^) arc progresivelly farther appart from residues Ser,, s
and Asp , ,,,,,. An alternative alignement of peptide residues 2157 till 2164 with

residues 2157 till 2164, that requires only a single insertion in HRV2 with respect

to HRV I A, gives an r . m.s. of3 . 5 A. From the relationship found in between VP2

and the peptide in the complex, docking studies of the Fab fragments and the $F5

antibody on the viral capside are now in progress ( figures 2-4).
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Figure 4. The ( tracing of the two closest Fab structures (yellow) positioned according to the
virus symmetry strongly suggest that they can be the arms of the same antibody molecule. The virus
and antibody molecular two fold axis (white) can then be coincident. The Fc antibody fragment
(purple) is shown only to give an orientative view of the likely docking of a complete antibody
molecule .
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ABS I RACI

This work is a preliminary report of the 2.5 A crystal structure of-the complex formed by
a synthetic peptide and an Fah fragment from a monoclonal antibody (8F5) that neutralizes
HRV2. This structure is compared to the crystal structure of the uncomplexed 8F5 antibody
which had previosly been determined at 2.8 A resolution in our laboratory. The peptide shows
high structural homology (r.m.s. 0.9 A) with the corresponding peptide in the HRVIA
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structure . This homology is used to analyse the docking of the antibody on the virus capsid.

Bivalent attachcnicnt with the virus and antibody molecular two fold axis coincident appears

to he the most likely arrangement.
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